
PRCBERT: Prompt Learning for Requirement Classification using
BERT-based Pretrained Language Models
Xianchang Luo

University of Science and Technology of China
Hefei, China

bigluo@mail.ustc.edu.cn

Yinxing Xue∗
University of Science and Technology of China

Suzhou, China
yxxue@ustc.edu.cn

Zhenchang Xing
CSIRO’s Data61 & Australian National University

Canberra, Australia
zhenchang.xing@anu.edu.au

Jiamou Sun
CSIRO’s Data61

Canberra, Australia
u5871153@anu.edu.au

ABSTRACT

Software requirement classification is a longstanding and impor-
tant problem in requirement engineering. Previous studies have
applied various machine learning techniques for this problem, in-
cluding Support Vector Machine (SVM) and decision trees. With
the recent popularity of NLP technique, the state-of-the-art ap-
proach NoRBERT utilizes the pre-trained languagemodel BERT and
achieves a satisfactory performance. However, the dataset PROMISE
used by the existing approaches for this problem consists of only
hundreds of requirements that are outdated according to today’s
technology and market trends. Besides, the NLP technique applied
in these approaches might be obsolete. In this paper, we propose
an approach of prompt learning for requirement classification us-
ing BERT-based pretrained language models (PRCBERT), which
applies flexible prompt templates to achieve accurate requirements
classification. Experiments conducted on two existing small-size re-
quirement datasets (PROMISE and NFR-Review) and our collected
large-scale requirement dataset NFR-SO prove that PRCBERT ex-
hibits moderately better classification performance than NoRBERT
and MLM-BERT (BERT with the standard prompt template). On
the de-labeled NFR-Review and NFR-SO datasets, Trans_PRCBERT
(the version of PRCBERT which is fine-tuned on PROMISE) is able
to have a satisfactory zero-shot performancewith 53.27% and 72.96%
F1-score when enabling a self-learning strategy.

KEYWORDS

requirement classification, prompt learning, zero-shot learning,
requirement auto-labeling, self-learning strategy

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3560417

ACM Reference Format:

Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun. 2022.
PRCBERT: Prompt Learning for Requirement Classification using BERT-
based Pretrained Language Models. In 37th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’22), October 10–14, 2022,

Rochester, MI, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3551349.3560417

1 INTRODUCTION

Software requirements play a vital role in software development and
product utilities, which usually include user experience, functional
requirements, and quality issues. Generally, a software requirement
could be divided into two classes: functional requirements (FR)
and non-functional requirements (NFR). The former describes the
services and functional behaviors of a software system, while the
latter involves user experience, such as quality, usability, security,
and issues such as privacy or software permissions [16].

In requirement engineering (RE) domain, plenty of studies
[1, 4, 10, 23] have been conducted on software requirement clas-
sification — the task of identifying the category of a requirement
sentence. NFR classification models based on decision tree and
support vector machine [1, 4, 10] are the most common, but often
require complex feature engineering. Fine-tuning a pre-trained lan-
guage model [23] has gradually become the mainstream method of
requirement classification. Insofar as these studies have suggested,
the existing machine learning (ML)- or natural language processing
(NLP)-based approaches could achieve a satisfactory performance
on this task with accuracy above 90%. Nevertheless, it needs to
be pointed out that all the above studies are all conducted on a
small-size requirement dataset, named PROMISE, consisting of 625
software requirements only. Besides, the BERT language model,
which NoRBERT [23] applies on PROMISE for fine-tuning, is no
longer the most sophisticated techniques in today’s NLP domain.
To summarize, the dataset for software requirement classification is

outdated and the NLP technique applied for this task could be obsolete.

To address the aforementioned issues, it is desired to have a
large-size dataset consisting of real-world software requirements
that could be representative of today’s new market demands and
technical trends. As social networking sites or app reviews has
revolutionized the science of data analysis such as stock trading
volatility prediction [28], sentiment analysis [37], these sites or apps
could be a ideal source for collecting today’s software requirements.

https://doi.org/10.1145/3551349.3560417
https://doi.org/10.1145/3551349.3560417
https://doi.org/10.1145/3551349.3560417

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

For example, as of March 2021, StackOverflow1 has more than
14 million registered users, with cumulative questions and answers
exceeding 21 million and 31 million respectively. StackOverflow
is the most popular social-technical information seeking platform
for developers [9], on which developers discusses a wide range of
issues related to code, including non-functional requirements. The
variety of issues is evident in the post tags, for example, perfor-
mance used more than 90,000 times, availability used more than
1700 times. As such, it provides software development organizations
with an unprecedented opportunity to monitor the opinions of large
numbers of users experiencing their systems. Meanwhile, it is also
urgent to realize automatic and accurate requirement classification
for ultra-large-scale software requirements engineering [17, 38].
Towards these goals, it is inevitable to face the challenges from
these aspects: 1) on the available dataset PROMISE, how to improve
the requirement classification model via the aid of the merging NLP
technique; 2). on the large-size dataset from StackOverflow, how
to leverage the learned knowledge from the existing requirement
datasets (such as PROMISE) for few-shot or zero-shot learning.

In this paper, we propose the approach of Prompt learning for
RequirementClassification using BERT (PRCBERT), which applies
flexible prompt templates to achieve accurate classification of soft-
ware requirements, and then adopts it to auto-label unseen require-
ments’ categories of the large-size requirement dataset crawled
from StackOverflow. Overall, we follow the usual method in
design science [22]. We first analyze the difficulty of NFR classifica-
tion and the limitations of current methods, and then design and
propose a new BERT-based classification model.

Technically, different from the standard prompt template whose
target word is masked by a special token [M] [41, 48, 49], before
inputting requirement sequences to transformer-based [51] lan-
guage model, PRCBERT duplicates each requirement sequence into
𝐾 samples (in this paper, 𝐾 means the number of label classes or
the size of requirement categories) and then concatenates with 𝐾
different prompt templates (we call the requirement with a flexible
prompt template as assertion in this paper); after acquiring the final
hidden state from a transformer-based [51] language model (such
as BERT [15] and RoBERTa [35]), PRCBERT adopts the mean pooler
strategy to calculate the assertion representation and feed it into the
following 2-class sigmoid layer to predict whether these declarative
sentences are reasonable or contradictory, respectively (also can
be regarded as a two-class natural language inference problem).
In addition, we propose an algorithm using the self-learning strat-
egy to enhance the transfer-ability and generality of PRCBERT for
auto-labeling unseen requirements.

In experiments, on the two existing small datasets of require-
ments (i.e., PROMISE and NFR-Review), PRCBERT have exhibited
the best classification performance for the task of requirement cate-
gory prediction in comparison with NoRBERT [23] and BERT-MLM.
On the large-size dataset of NFR-SO (we crawl from StackOver-
flow), under both the scenario of zero- and few-shot learning,
PRCBERT is shown to have better transfer-ability and generality
than the compared models NoRBERT and BERT-MLM, too. In ad-
dition, The proposed algorithm using a self-learning strategy has

1StackOverflow: an information sharing and discussion platform for programmers or
those who love programming, https://stackoverflow.com/

PROMISE snippets:

NFR-SO snippets:

Figure 1: PROMISE and NFR-SO (non-functional require-

ments from StackOverflow) requirement snippets (A: avail-

ability, PE: performance, FT: fault tolerance, SE: security)

product
system

able user

time

users

data

information

disputes

website

allow
use

available

interface

program

player

access
nursing

clinical

d
i
s
p
l
a
y

application

seconds

provide

a
d
m
i
n
i
s
t
r
a
t
o
r
s

staff

new

2

search

parts

database

5

d
i
s
p
u
t
e

members

report

case

m
i
n
u
t
e
s

c
l
a
s
s
e
s-

recycled

support

90

class

customers

number

request

game

day

section

list

movies

p
l
a
y
e
r
s

w
c
s

a
b
i
l
i
t
y

i
n
c
l
u
d
e

process

s
h
o
t

100

authorized

year

r
e
s
p
o
n
s
e 10

server

p
r
e
f
e
r
r
e
d

a
d
m
i
n
i
s
t
r
a
t
o
r

status

merchant

audit
repair

leads

d
e
f
e
n
s
i
v
e

results

student

site

lab

functionality

c
u
s
t
o
m
e
r

movie

streaming

lead

changes

cohort

add

facility

offensive

notify students

m
a
n
a
g
e
m
e
n
t

easy

internet

view

i
n
c
l
u
d
i
n
g

card

1

r
a
t
i
n
g
s

washing

ship

grid

hours

returned

(a) Word Cloud of PROMISE

performance
way
security

python

d
a
t
a server

c
o
d
e

closed

application

time

file

portable

use
api

app

java

slow

database

multiple

function

high

web

user

c

sql

s
e
c
u
r
e

query

vs

s
p
e
e
d

duplicate

access

list

best

loop

array

faster

large

availability efficient

scalability

load

-

android

mysql

c
+
+

azure

phpkey

cluster

improve

scalable

memory

ha

different

j
a
v
a
s
c
r
i
p
t

files

spring

c
l
i
e
n
t

store

run

string

windows

e
r
r
o
r

set

p
o
s
s
i
b
l
e

table

create

v
a
l
u
e

a
w
s

service

s
c
r
i
p
t

issue

running google

based

check

s
c
a
l
i
n
g

r
e
q
u
e
s
t

f
i
n
d

page

number

token

scale

react

w
e
b
s
i
t
e

p
r
e
v
e
n
t

p
a
s
s
w
o
r
d

s
y
s
t
e
m

method

v
a
l
u
e
s

node

s
l
o
w
e
r

s
i
n
g
l
e

authenticationread

o
b
j
e
c
t

vulnerability

#

safe

program

(b) Word Cloud of NFR-SO

Figure 2: Word Clouds of PROMISE and NFR-SO (top-100

most frequent words)

sharply boosted the classification performance of PRCBERT with
zero-shot learning on the de-labeled NFR-Review and NFR-SO.

To sum up, our work mainly makes the following contributions:
• To the best knowledge of ours, we make the first attempt on
applying prompt learning for software requirement classification.
Even in software engineering domain, our study should be, if not
the first, one of the earliest studies on exploring prompt learning
for software engineering tasks.
• Wepropose flexible prompting templates by converting onemulti-
class classification problem into 𝐾 binary classification problems,
whichmake PRCBERT performmoderately better thanNoRBERT
(BERT followed by a softmax layer for fitting 𝐾-class classifica-
tion) and BERT-MLM (BERT with the standard prompt template).
• We construct a large-scale requirement dataset NFR-SO, which
is 28 times larger than PROMISE and 14 times large than NFR-
Review. By directly transferring PRCBERT on NFR-Review and
NFR-SO for zero-shot learning, it achieves the F1 score of 37.79%
and 66.20%. After combining a self-learning strategy, PRCBERT
could achieve the F1 score of 53.27% and 72.96%, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the new trend and problem in the
software requirement classification task. Then, we introduce sev-
eral existing approaches towards this task, including RNN-, CNN-,
Transformer- or Prompt-based classification.

2.1 A Motivating Example

The PROMISE [47] dataset is a software requirement dataset main-
tained by the School of Information and Engineering, University
of Ottawa, Canada in 2005, which aims to collect various software
engineering knowledge for the model to learn to understand and
master the "category prediction of software requirement". PROMISE
is crowdsourced by 15 teams according to ISO/IEC-25010 standard
[24] and only consists of 625 software requirements.

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

Surprisingly, despite the disadvantage of being a small size (total
625) and from a few crowdsourcing sources (15 teams), PROMISE
has been one of most frequently-used requirements dataset [2, 39]
in the past two decades. Even in 2020, it is still used [23]. Besides,
PROMISE has two other limitations. First, the requirements in
PROMISE might not be representative of today’s software require-
ments, considering the rapid development of software techniques.
Apart from being outdated, second, the expressions of requirements
in PROMISE are very rigid and the sentence structural are almost
identical. As shown in Figure 1, the four requirement statements
in PROMISE have simple and similar syntactic structures — being
subject–verb–predicate (SVP) or subject–verb–object (SVO).

In contrast, today’s software requirements from Internet web-
sites such as StackOverflow (see Table 1) contain very varied
sentence structures (e.g., interrogative and negative sentences in
NFR-SO) and more syntactic characteristics (e.g., acronyms and
technical terms). The previous study [21] has already confirmed
that data drift still exists between historical and newly published
vulnerability descriptions despite being on the same platform. This
data drift phenomenon also exists in non-functional requirements.
Figure 2 shows theword clouds (the top-100most frequent words) of
PROMISE and NFR-SO, respectively. Though both of them mainly
concentrate on the non-functional requirements, such as available
and functionality in PROMISE, and scalable, security, performance,
and availability in NFR-SO, NFR-SO pays more attentions to the
non-functional requirements considering the frequencies and num-
ber of these terms. In addition, NFR-SO mentions and lists non-
functional requirement issues about these qualitative terms: using
slow, slower, high, different, best, vs, large, and faster, etc. Hence, in
RE, absorbing the advanced zero-shot or few-shot learning [11, 42]
with prompt is desired to help construct or auto-label the large-scale
dataset on the basis of the available small-size labeled dataset.

In this paper, we aim to construct a promising architecture with

the cutting-edge DL (or NLP) techniques to perform requirement clas-

sification on large-scale labeled dataset of software requirements from

real-world technical forum such as StackOverflow and the existing

available small size datasets (such as PROMISE) .

2.2 Existing Text Classification Techniques

In general, many existing classification techniques in NLP have
already been or could potentially be applied to solve the software
requirement classification. We categorize them into three types of
classification and briefly introduce each type as follows.
RNN- and CNN-based Classification. RNN-based classification
models use LSTM or GRU cell to extract sequence semantics in time
steps [32], while CNN-based models process and integrate local
information through convolution operations [25, 43]. Although the
following various enhancements (e.g., combining RNN and CNN
in TextCNN [30]; integrating lexical, syntactic, and semantic char-
acteristics into contextualized word representation in ELMo [3];
or applying attention mechanism to autofocus sequence seman-
tics in HAN [56, 59]) have improved the above vanilla language
models. However, limited by the causal LSTM architecture and the
local convolution operations, RNN- and CNN-based models con-
centrate on local information extraction (attention mechanism and
feature engineering heuristics can alleviate it to a certain extent,
but cannot make a breakthrough). Hence, RNN- and CNN-based

Table 1: Samples of NFR-SO for 7 NFR Classes
∗

NFR Class

(Frequency)

Samples

A (1301)

• How to ensure that the data in the consumption Kafka is not
lost?

PE (6794)

• Why is checking for a variables existence taking more time than
copying an array which should be a O(1) vs O(n) operation?

MN (295)
• How can I maintain an iOS Framework initially installed via

CocoaPods but modified manually later on?

PO (1393)
• How can I put the animate transition of my javascript into my

css?
SC (2206) • How to store and index several billion logs every day

SE (5211)

• Fortify: How to automate getting issues (vulnerability) list under
a project using Fortify API/CLI, to break my pipeline if there
are vulnerabilities

FT (234)

• How to add fault tolerance support to an existing MPI based
system such that the system continues even after a machine
goes down?

∗ A: availability; PE: performance; MN: maintainability; PO: portability; SC: scalability; SE: security;
FT: fault-tolerance.

classification models have been popular for quite a while, until BERT

proposed in 2018, surpassed by the transformer-based classification.
Numerous experiments on transformer-based language models
[13, 15, 18, 46, 57] show that CNN- or RNN-based models have no
strong competitiveness in classification performance nowadays —
where 66M parameters DistilBERT [46] outperformed 180M param-
eters ELMo [3] on GLUE task STS-B [52], in addition, DistilBERT
takes less inference time.
Transformer-based Classification. Transformer-based language
models achieve nearly perfect performance jump from the previ-
ous best reported (i.e., RNN- and CNN-Based language models).
Transformer-based language models typically consist of two steps:
(1) unsupervised pre-training from the unlabeled corpus and (2)
transferring to downstream tasks (generally fine-tune for sentence-
level and subword-level tasks with just an additional neural net-
work following the pre-trained model). One of the most influential
transformer-based language models BERT (Bidirectional Encoder
Eepresentations for Transformers) [15] utilizes the two auxiliary
tasks, NSP (next sentence prediction) and MLM (masked language
model), to implement the efficient understanding of the input se-
quence. RoBERTa (Robustly optimized BERT approach) [35] re-
moves NSP objective and pre-trains the model longer with bigger
batches and larger corpus, the performance of the model is fur-
ther improved.NoRBERT (Non-functional and functional Require-
ments classification using BERT) [23] utilizes a pre-trained BERT
model to perform classification task on the PROMISE [47] dataset
(see Figure 5 NoRBERT Input) and outperforms the other compared
methods. Although transformer-based models can easily acquire
excellent results on handling NLP tasks [33, 55], simply adding an

additional neural network after a transformer-based model may re-

sult in abruptness and a low correlation between the input sequence

and the target task — for example, given the input sequence “The
system shall refresh the display every 60 seconds”, BERT will use a
special token [CLS] which means the semantics of input sequence.
However, it fails to connect the vector representation of [CLS] to
the task of requirement category prediction.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

PRCBERT

PRCBERT

freeze parameters

update parameters

split

duplicate & shuffle

assertion 1
assertion 2

…
assertion K

foreach sample:

input K assertions simultaneously
assertion 1 conf
assertion 2 conf

…
assertion K conf

a. sample

(1) Train

(2) Inference

b. Inference & refine PRCBERTc. Train

(3) Auto-Label Requirements
a. update

via frozen PRCBERT
freeze parameters

Figure 3: Overview of our approach, where the top part corresponds to the train (fine-tune) step and the inference step

respectively; and the bottom part is our proposed auto-labeling method (zero-shot + self-learning) for unseen requirements.

Prompt-based Classification. The key idea of prompt learning is
to add a prompt text into the input sequence to enhance the seman-
tic fluency between input and target task [48, 49]. The excellent
performance of the prompt-based language models [11, 42] show
that the application of prompt is able to bridge the semantics gap
between general pre-trained languagemodels and specific classifica-
tion task. Standard prompt engineering usually masks a target label
(we refer to this standard prompt classification as BERT-MLM)
appended after the input sequence to improve the semantic fluency
and correlation between the input sequence and the target task
[48, 49]. For example, in Figure 5, given the input sequence “The
system shall refresh ...”, BERT-MLM will append the text “This is
[M] Requirement”, where [M] is a special token used to replace the
target label. Here, BERT-MLM uses the ℎ[M] (final vector represen-
tation of special token [M]) but not ℎ[CLS] (vector representation of
input sequence learned by BERT) to predict the target word in the
form of cloze test will not create a pretrain-finetune discrepancy
(special token [M] occurs in both pretrain and finetune steps) [55].
For the requirement classification problem in RE, traditional ML
techniques (e.g., support vector machine, k-nearest neighbors) and
transformer-based models [15, 23] have been applied on the dataset
PROMISE. However, we have not witnessed any prompt-based learn-

ing approach towards the requirement classification problem and the

auto-labeling of a large-scale dataset.

2.3 Research Challenges

Abundant studies have exhibited that prompt learning can help fur-
ther improve the transformer-based language models’ performance,
if a proper prompt template is used. For example, by customizing the
prompt template, CLIP [41] has significantly boosted the image-text
bimodal classification performance by 5%. GPT-3 [11] and T5 [42]
all adopt a prompt to unify NLU (natural language understanding)
and NLG (natural language generation) tasks, grasping better se-
mantic understanding ability from joint-learning of multiple tasks,
where GPT-3 achieves 81.5% F1 score when zero-shooting on CoQA
(conversational question answering) [45] challenge (the previous

SOTA is 90.7%). Besides, it is proved that the application of a self-
learning strategy is able to help for the classification task, such as
relation type prediction [7, 8].

To follow the success of applying prompt-learning in the NLP
domain, three research challenges are encountered when adopting
the prompt-based classification for solving the task of software
requirement classification and auto-labeling.
C1. How to design a more effective prompt template, boosting

the classification accuracy, than the standard prompt template
used in BERT-MLM (see the example in Figure 5)?

C2. How to attain a prompt strategy preserving the transfer-ability
and generality of a pretrained language model, suiting the
characteristics of unseen requirements?

C3. How to combine self-learning with prompt-learning for the
automation of labeling the large-scale requirement samples,
even when most of them are unseen before?

For these ends, in this paper, we present the approach PRCBERT
with flexible prompt templates and combine self-learning strategy
to address these challenges. The workflow and technical details of
PRCBERT are depicted and elaborated in §3 and §4, respectively.

3 APPROACH OVERVIEW AND KEY

SOLUTIONS

In this section, we will introduce the overview of PRCBERT (in-
cluding the training and inference step) and key solutions.

3.1 Overview

Following modern models’ workflow to address a classification task,
PRCBERT consists of three phases: fine-tune training, inference,
and auto-labeling (see Figure 3). The input of the whole approach is
a dataset of requirement samples (e.g., a well-labeled dataset such as
PROMISE). On this given dataset, PRCBERTwill apply the proposed
prompt templates to train and update its learnable parameters,
then apply this model for requirement inference (prediction). Last,
PRCBERT combines self-learning with this fine-tuned model to
iteratively auto-label the unseen requirement samples (e.g., those
from StackOverflow). Each phase is introduced below:

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

(1) Train Step. Before inputting the train samples into PRCBERT,
we duplicate each sample appended with 𝐾 different prompt tem-
plates and then shuffle the duplicated train set. After getting the
classification confidence from the binary classifier in PRCBERT, we
calculate the training objective loss (see §4.4) and update the gradi-
ent of its learnable parameters through back propagation. During
training step, we iterate the loss calculation and gradient descent
operation until PRCBERT convergences or the train epochs reach
the predefined maximum threshold.
(2) Inference Step. The middle part of Figure 3 is the inference step
of PRCBERT. Different from the duplicating and shuffling opera-
tions of training step, during inference we simultaneously input the
duplicated 𝐾 assertions of a given input sample to PRCBERT and
then get the corresponding 𝐾 classification confidences, the class
which owns the maximum softmax value over the 𝐾 classification
confidences corresponds to the predicted label of the requirement
sequence. Hence, the output of this step is the predicted label for
each requirement sample.
(3) Auto-label Step. The bottom part of Figure 3 illustrates how
PRCBERT auto-labels unseen requirements via combining zero-
shot learning with self-learning strategy. That is, we first directly
apply the model of PRCBERT from step (2), which is fine-tuned on
a labeled requirement dataset (such as PROMISE), to zero-shot on
another requirement dataset (e.g., NFR-SO) for unseen requirements
classification. Then, different from the active learning strategy [20,
26] turning to the help of time-consuming human annotation, we
select the samples with higher confidence for iteratively updating
PRCBERT to further boost the zero-shot performance of PRCBERT,
called self(-supervised) learning [34].

3.2 Key Solutions to Challenges

We highlight the key solutions in PRCBERT to address the afore-
mentioned challenges in §2.3 as follows.
Flexible Prompt Templates for C1 and C2. Instead of using the
standard prompt template with a mask token [M], we convert the
problem of 𝐾-class classification into 𝐾 times of binary classifica-
tion, and then instantiate each category to get the corresponding
prompt templates (see Figure 5). The simple but effective prompt
template is “This is <requirement category name> Requirement.”.
Note that, though the number of our proposed flexible prompt
templates equals the number of classes, PRCBERT can be directly
applicable to a classification problem with any number of classes
(not necessary to additionally adapt the classification model).
Zero-shot + Self-learning for C3. In addition to our proposed flex-
ible prompt templates, we adopt a self-learning strategy to further
boost the performance of auto-labeling the unseen requirements.
As shown in the bottom part of Figure 3, we iterate the below steps
to auto-label the unseen requirements:

(a) getting the coarse train set: we obtain the dataset in two ways,
random sampling from the original requirement dataset at the
beginning or updating by the following refined train set during
self-learning iteration;

(b) refining the train set: to get the refined train set, first, we should
acquire the prediction confidence of each sample in coarse train
set via the frozen parameters PRCBERT (at beginning initial-
ized with the PRCBERT fine-tuned on another requirement
dataset, during iteration we will apply the updated PRCBERT

whose parameters are frozen), then filter the sample whose
corresponding maximum confidence is less than the prede-
fined threshold. Note that, we empirically regard the predicted
labels with high confidence as ground truth (i.e., a require-
ment sentence labeled with the predicted category) for the
subsequent training step;

(c) fine-tuning PRCBERT based on the refined train set: in this step,
we perform supervised training and update PRCBERT based
on the refined train set.

Until no sample is filtered or a predefined maximum of epochs
is reached, the self-learning process terminates.

4 TECHNICAL DETAILS OF PRCBERT

To better understand our proposed PRCBERT, we will elaborate on
the major steps in this section, including the transformer architec-
ture, sigmoid binary classifier, input vector representation, training
objective, and the auto-label algorithm.

4.1 Transformer Encoder

Transformer [51] was first proposed by Ashish Vaswani in 2017.
This model is completely different from traditional recurrent and
convolutional neural networks. Only based on the attention mech-
anism [5], the transformer can implement semantic interaction
between all sequence text subwords (also called tokens) without
any attenuation (due to the gradient vanishing and explosion caused
by the long relative distance between subwords, previous LSTM-
based language models can process 200 context words on average
[14, 27]).

Typically, a transformer consists of an encoder and a decoder,
since only the text classification task is involved in this paper, we
will merely discuss the encoder part here. As shown in Figure 4, a
transformer [51] encoder is composed of a stacked 𝐿-layer subblock,
each subblock possesses multi-head self-attention and FFN (feed-
forward network) two sublayers.
Multi-Head Self-Attention. In this sublayer we first should
project𝐻 𝑙−1 ∈ R𝑙𝑒𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 into𝑄 ,𝐾 ,𝑉 through three independent
projection networks, where the 𝑙𝑒𝑛 means the predefined maxi-
mum sequence length, 𝑑𝑚𝑜𝑑𝑒𝑙 is the model embedding dimension,
and𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 are three projection networks
weight matrixes, respectively.

𝑄 = 𝐻 𝑙−1𝑊𝑄

𝐾 = 𝐻 𝑙−1𝑊𝐾

𝑉 = 𝐻 𝑙−1𝑊𝑉

(1)

Then, as shown in Equation 2: carrying out the multi-head self-
attention mechanism, where ℎ represents the number of heads
(similar to convolutional kernel [40], to some extent, the larger num-
ber of heads assigned, the more semantic features can be learned);
𝑑𝑘 =

𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
; 𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ∈ R𝑙𝑒𝑛×𝑑𝑘 are the i-th slice of 𝑄 , 𝐾 , 𝑉 . In

each concatenated head attention computation, dot-product 𝑄𝑖𝐾𝑇𝑖
means semantic interaction between sequence subwords, 1√

𝑑𝑘
is

the scaling factor, and the softmax function is to get the normal-
ized semantic weights, this square matrix represents the degree of
influence between the semantics of each subword in the sequence.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

h

KQ V

×

[CLS] <requirement>[SEP] <prompt template>[SEP]

Figure 4: Architecture of PRCBERT

NoRBERT Input：

BERT-MLM Input:

PRCBERT Input：

×

Figure 5: NoRBERT, BERT-MLM, and PRCBERT classifica-

tion examples, where blue font means the input of classifier

(represented by a down arrow ↓), ✓ and ✕ mean the binary

classification results, respectively.

MultiHead(Q,K,V) = Concat(head1, ..., headℎ)𝑊𝑂

where head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖)

Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖) = softmax(
𝑄𝑖𝐾

𝑇
𝑖√︁
𝑑𝑘

)𝑉𝑖

(2)

Feed-Forward Network. The output of the Multi-Head Self-
Attention sublayer will then be input to a feed-forward network
(FFN). As illustrated in Equation 3, FNN contains two linear lay-
ers with only a ReLU activation in between [51], where 𝑊1 ∈
R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓 𝑓 and𝑊2 ∈ R𝑑𝑓 𝑓 ×𝑑𝑚𝑜𝑑𝑒𝑙 (𝑑𝑓 𝑓 is an integral multiple of
𝑑𝑚𝑜𝑑𝑒𝑙) first increase the dimension and then reduce the dimension
of sequence hidden state to achieve the main semantic information
acquisition like the convolution operation [40].

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (3)

To sum up, the calculation of the transformer encoder can be
represented as Equation 4, where 𝐻0 is the input sequence repre-
sentation (see §4.3), and 𝐿 is the number of encoder layers.

𝐻 𝑙 = subblock(𝐻 𝑙−1), 𝑙 = 1, ..., 𝐿 (4)

4.2 Sigmoid Classifier.

In PRCBERT, we change a 𝐾-class problem into 𝐾 binary classifi-
cation problems with corresponding prompt templates. Thus, we
apply a sigmoid classifier rather than a softmax classifier, Equation
5 shows the confidence calculation that the assertion is predicted as

correct, and the contrary confidence of assertion which is predicted
as false equals 1 − 𝑆 (𝑥).

𝑆 (𝑥) = 1
1 + 𝑒−𝑥

(5)

The reason of applying sigmoid function is to normalize the
linear layer outputs to effectively execute the backward gradient
propagation for parameters updating.

4.3 Input Representation

In this paper, we exploit the pre-trained BERT [15] and RoBERTa
[35] transformer-based language models to initialize our PRCBERT
respectively without learning from scratch. Transformer-based
model’s original input is a sequence of subwords (using an unsu-
pervised BPE algorithm to divide subwords2), BERT applies MLM
(masked language model) and NSP (next sentence prediction) aux-
iliary tasks to capture the input sentence pair semantics, while
the input of RoBERTa [35] is only a single sentence (RoBERTa has
removed the next sentence prediction auxiliary task).

When using BERT initialization, the language model input (in
this paper, also called assertion) is as “[CLS] <requirement text>
[SEP] This is <requirement category name> Requirement. [SEP]”,
where the special token [CLS] appended in the front of the original
input is used to represent the entire input sequence semantics, and
the appended [SEP] is a separator token of each sentence. Following
that used in BERT [15], for each subword𝑤𝑡 in the input sequence,
its representation 𝑥𝑡 (as shown in Equation 6) is composed of the
corresponding token embedding, position embedding, and segment
embedding. when initialized with RoBERTa, compared with BERT,
we replace the first [SEP] token of its input with “\n” and don’t use
the segment embedding any longer.

𝑥𝑡 = 𝑇𝐸𝑤𝑡
+ 𝑃𝐸𝑤𝑡

+ 𝑆𝐸𝑤𝑡
(6)

Therefore, the PRCBERT input representation
𝐻0=[𝑥1, 𝑥2, ..., 𝑥𝑙𝑒𝑛], where 𝑙𝑒𝑛 is the predefined maximum
length of the input sequence (in this paper we set it 512). When
the length of the input sequence is less than 𝑙𝑒𝑛, we will use
consecutive special tokens [PAD] to pad the sequence length,
and if the input sequence is longer than 𝑙𝑒𝑛 (in this paper, all of
our requirements are less than 512), we will truncate the first 𝑙𝑒𝑛
subwords (including the [CLS] and [SEP] tokens).
2BPE algorithm repository https://github.com/google/sentencepiece

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

Algorithm 1: Auto-label algorithm
Input: 𝑃𝑅𝐶𝐵𝐸𝑅𝑇 , the PRCBERT fine-tuned on PROMISE
Input: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , a new unlabeled requirement dataset
Input: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , a float whose range is in (0, 1)
Output: 𝑜𝑢𝑡𝑝𝑢𝑡 , classification result of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

1 𝑐𝑜𝑎𝑟𝑠𝑒𝑆𝑒𝑡 ← random_sample(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
/* self-learning */

2 while True do

3 𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡 ← ∅
4 foreach max_confidence in PRCBERT.inference(coarseSet) do

5 if max_confidence > threshold then

6 𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡 + = (𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑙𝑎𝑏𝑒𝑙)
7 end

8 end

9 if 𝑐𝑜𝑎𝑟𝑠𝑒𝑆𝑒𝑡 == 𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡 .𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 then

10 break;
11 end

12 𝑃𝑅𝐶𝐵𝐸𝑅𝑇 ← 𝑃𝑅𝐶𝐵𝐸𝑅𝑇 .train(𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡)
13 𝑐𝑜𝑎𝑟𝑠𝑒𝑆𝑒𝑡 ← 𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡 .𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

14 end

15 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑃𝑅𝐶𝐵𝐸𝑅𝑇 .inference(𝑑𝑎𝑡𝑎𝑠𝑒𝑡)
16 return 𝑟𝑒𝑠𝑢𝑙𝑡

4.4 Training Objective

As the description of the training step in §3, PRCBERT changes the
𝐾-class classification problem into 𝐾 2-class judgment problems
by duplicating the sample sequence with 𝐾 corresponding flexible
prompt templates. The training objective loss of PRCBERT is the
cross-entropy of all duplicated assertions (see Equation 7):

L = −
𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

log𝑝 (𝑖, 𝑗),𝑦 (𝑖,𝑗) , 𝑦 (𝑖, 𝑗) ∈ {+,−} (7)

where 𝑁 and 𝐾 are the numbers of requirements in the train set
and the number of classes respectively; label + and − represent the
corresponding assertion is True and False, respectively; 𝑦 (𝑖, 𝑗) is the
true label of the 𝑗-th assertion of the 𝑖-th requirement; in addition,
𝑝 (𝑖, 𝑗),𝑦 (𝑖,𝑗) denotes the probability that the 𝑗-th assertion of the 𝑖-th
requirement is predicted to be 𝑦 (𝑖, 𝑗) through PRCBERT.

4.5 Auto-label Algorithm

In this subsection, we will introduce our auto-label algorithmwhich
is integrated with an unsupervised self-learning strategy in detail.

Algo. 1 is our proposed algorithm for auto-classification of un-
labeled requirement datasets. This algorithm has three inputs: the
PRCBERT which is already fine-tuned on PROMISE, an unlabeled
requirement 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , and a float value called 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In addi-
tion, its output 𝑟𝑒𝑠𝑢𝑙𝑡 is the predicted labels of each requirement in
𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . At the first line, we should initialize the 𝑐𝑜𝑎𝑟𝑠𝑒𝑆𝑒𝑡 by ran-
domly sampling from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ; In lines 3-8, we execute the refine op-
eration and filter the sample whose corresponding𝑚𝑎𝑥_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒
outputted by PRCBERT is less than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ; then as shown in
line 12, based on the 𝑟𝑒 𝑓 𝑖𝑛𝑒𝑑𝑆𝑒𝑡 , the PRCBERT updates its inner
parameters via gradient descent; we will iterate the self-learning
operation until no requirements are filtered out (see lines 9-11).

FR A FT L LF MN O PE PO SC SE US RE
Category Name

0
10^0

10^1

10^2

10^3

10^4

#S
am

pl
e

PROMISE
NFR-Review
NFR-SO

Figure 6: Samples distribution of PROMISE, NFR-Review,

and NFR-SO; where F: functional, A: availability, FT: fault-

tolerance, LF: look & feel, MN: maintainability, O: opera-

tional, PE: performance, PO: portability, SC: scalability, SE:

security, US: usability, RE: reliability

Finally, Algo. 1 outputs the predicted labels which are inferred by
the well-trained PRCBERT.

5 EVALUATION

In this section, we first list some research questions (RQs) in evalua-
tion, introduce the three different requirement datasets, then depict
the experimental setup in detail, and finally answer the RQs.

5.1 Research Questions

We aim to answer these three research questions (RQs):

RQ1. What are the best model architecture and parameter choices
of the proposed PRCBERT for requirement classification?

RQ2. How accurate is PRCBERT in classifying requirements in
PROMISE, NFR-Review and NFR-SO? When compared with
NoRBERT and BERT-MLM, can PRCBERT be better?

RQ3. How do the capabilities of generalization and transfer-ability
of PRCBERT? How effective is Algo. 1 in enabling PRCBERT
to auto-label unseen requirements?

5.2 Datasets

We introduce the three used requirement datasets as follows.
PROMISE. PROMISE is a requirement dataset crowdsourced by
15 teams in 2005, which widely appears in various requirement
classification literature, even in 2020, it is still used in [23]. As
shown in Figure 6, the PROMISE requirement dataset can be divided
into two parts: FR (functional requirement, 255 samples) and NFR
(non-functional requirement, 370 samples). In addition, PROMISE
has 11 NFR categories (label classes).
NFR-Review. This requirement dataset is mentioned and released
in [53], which consists of 1278 NFR user review sentences from
iBooks and WhatsApp two popular Apps (therefore we name it
NFR-Review). Figure 6 shows that NFR-Review has a total of 1278
samples of 5 NFR categories: security, portability, performance,
reliability, and usability.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

Table 2: Statistics of PROMISE, NFR-Review, and NFR-SO

Dataset

Item

#Sample #Class Avg. Word Avg. Char

PROMISE 625 12 22 120
NFR-Review 1278 5 14.5 70
NFR-SO 17434 7 11 70

NFR-SO. NFR-SO (nonfunctional requirements from StackOver-
flow) is a labeled dataset that we crawled (using BeautifulSoup43)
from the real-world technical forum StackOverflow, each sam-
ple of NFR-SO is the interrogation content tagged by one of the 7
NFR categories (including availability, performance, maintainabil-
ity, portability, scalability, security, and fault-tolerance). Normally,
their tags are credible, as they are chosen or added manually by
the human questioners. Still, there are some samples with two or
more tags among the seven, and we will filter them as we are form-
ing a dataset for single-label classification. Then, we ensure the
correctness of sample labels as much as possible through auxiliary
manual inspection. Finally, we collect NFR-SO that contains 17434
samples (each sample corresponds to the question part, excluding
the subsequent answers) in total4.

Table 2 shows the statistic information of the three datasets,
where NFR-Review is 2x larger than PROMISE, and NFR-SO is
~28x larger than PROMISE. In addition, only PROMISE contains the
functional requirements (255 samples); Both the average number
of words and characters of PROMISE requirements are the longest.

5.3 Experimental Setup

Parameters Setting. The pre-trained transformer-based language
models are all downloaded from the model hub 5 maintained by
huggingface, including BERT-base, BERT-large, RoBERTa-base, and
RoBERTa-large, whose parameters are following that in BERT [15]
or RoBERTa [35]. Besides, the maximum input sequence length 𝑙𝑒𝑛
equals 512. During training, we set the batch size as 8, learning
rate as 5e−6, epochs as 32, and all the train and inference steps
are executed on a 24GB NVIDIA GeForce RTX 3090. Moreover,
the optimizer we adopt is AdamW [36], and its inner parameters
are 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1𝑒−6, and 𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 = 0.0,
respectively.
Evaluation Baselines. To reflect the characteristic of PRCBERT
through a fair comparison, we use three baseline models: NoRBERT
[23], BERT-MLM, and Trans_PRCBERT.NoRBERT directly applies
the sequence representation (ℎ[CLS]) outputted from a transformer-
based language model to a 𝐾-class classification neural network.
Different from NoRBERT, BERT-MLM combines the original re-
quirement text with a standard prompt template (e.g., This is [𝑀]
Requirement.) as the input sequence, after getting the final hid-
den state of this sequence from a transformer, BERT-MLM feeds
the vector representation of the masked token [𝑀] (ℎ[M]) to a
𝐾-class classification neural network to restore its target class.
Trans_PRCBERT is previously fine-tuned on PROMISE and will
be subsequently trained on NFR-Review or NFR-SO, rather than

3BeautifulSoup4 Homepage, https://www.crummy.com/software/BeautifulSoup/
4We have released the NFR-SO dataset in anonymous website https://sites.google.com/
view/prcbert/home
5https://huggingface.co/models

Table 3: The binary classification performance of PROMISE

(𝐾 = 2, FR or NFR)

Model Pooler

FR (255) NFR (370)

𝑃 𝑅 𝐹1 𝑃 𝑅 𝐹1
PRCBERT with
BERT-base

first 0.9246 0.9137 0.9191 0.9293 0.9595 0.9441
mean 0.9141 0.9176 0.9159 0.9128 0.9622 0.9368

PRCBERT with
BERT-large

first 0.9186 0.9294 0.9240 0.9368 0.9622 0.9493
mean 0.9195 0.9412 0.9302 0.9267 0.9568 0.9415

PRCBERT with
RoBERTa-base

first 0.9249 0.9176 0.9213 0.9207 0.9730 0.9461
mean 0.9498 0.8902 0.9190 0.9289 0.9541 0.9413

PRCBERT with
RoBERTa-large

first 0.9198 0.9451 0.9323 0.9440 0.9568 0.9503
mean 0.9195 0.9412 0.9302 0.9468 0.9622 0.9544

NoRBERT with
BERT-large1 first 0.92 0.88 0.90 0.92 0.95 0.93

1 The experimental result is from NoRBERT [23].

directly trained on NFR-Review or NFR-SO like PRCBERT. The
corresponding classification examples are illustrated in Figure 5.
EvaluationMetrics. In this paper, we use the F1 score (as shown in
Equation 8) to measure the classification performance of a specified
class. 𝑇𝑃𝑖 means the number of samples that both the predicted
classes and their target classes all are 𝑖-th class, while 𝐹𝑃𝑖 is the
number of samples whose predicted classes are 𝑖-th class but their
target classes are non-𝑖-th classes, and 𝐹𝑁𝑖 is the number of samples
whose target classes are 𝑖-th class but their predicted classes are
non-𝑖-th classes.

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
, 𝑅𝑖 =

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
, 𝐹𝑖 =

2 ∗ 𝑃𝑖 ∗ 𝑅𝑖
𝑃𝑖 + 𝑅𝑖

(8)

For the overall performance mensuration of multi-class classifi-
cation, we adopt the weighted F1 score (also called𝑤-𝐹) as below:

𝑤𝑖 =
#𝑠𝑎𝑚𝑝𝑙𝑒𝑖∑𝐾
𝑗=1 #𝑠𝑎𝑚𝑝𝑙𝑒 𝑗

, 𝑤-𝐹 =

𝐾∑︁
𝑖=1

𝑤𝑖 ∗ 𝐹𝑖 (9)

Where𝑤𝑖 means proportion of the samples with 𝑖-th class label
in all samples, and 𝐹𝑖 corresponds to the F1 score of the 𝑖-th class
samples classification.

To eliminate the randomness in the training process, we perform
the paired T-test [29, 54] to analyze the classification performance
6 between PRCBERT and the baselines (i.e., NoRBERT and BERT-
MLM).

Note that, all metric calculations are based on the 10-fold cross-
validation output with multiple repeated executions. In addition,
when fine-tuning on PROMISE, we only use the random seed
904727489, for the classification of NFR-Review and NFR-SO, the in-
ference result is the mean of three𝑤-𝐹 (the corresponding random
seeds are 42, 930728, and 904727489 respectively).

5.4 Experimental Results

Binary Classification of PROMISE FR/NFR. The classification
performance of PROMISE FR/NFR is shown in Table 3, and we
obtain 8 sets of experimental results by varying the values of the
three parameters (pre-trained language model, the corresponding
model size, and the pooler strategy). Where the pooler strategy is
the sequence vector representation extraction method that changes

6we perform the paired T-test with the aid of the Microsoft Excel spreadsheet program.

https://sites.google.com/view/prcbert/home
https://sites.google.com/view/prcbert/home
https://huggingface.co/models

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 4: The classification performance (F1 score) of

PROMISE NFR subclasses (𝐾=10)

NFR

PRCBERT NoRBERT
1

BERT-base BERT-large RoBERTa-base RoBERTa-large BERT-largefirst mean first mean first mean first mean
A (21) 0.9767 0.9268 0.8947 0.8780 0.9302 0.9268 0.9767 1.0000 0.78
FT (10) 0.8889 0.7368 0.9412 0.9412 0.8889 1.0000 1.0000 1.0000 0.60
L (13) 0.9630 0.6842 0.9630 1.0000 0.8889 0.9600 0.9600 0.9630 0.83
LF (38) 0.9333 0.8974 0.9589 0.9333 0.9189 0.9189 0.9600 0.9367 0.80
MN (17) 0.7692 0.8571 0.8649 0.8824 0.7879 0.8125 0.8824 0.9412 0.53
0 (62) 0.9280 0.9268 0.8730 0.9106 0.8527 0.8800 0.9440 0.9449 0.81
PE (54) 0.9434 0.9074 0.9423 0.9434 0.9174 0.9159 0.9455 0.9615 0.90
SC (21) 0.8636 0.8718 0.8780 0.8636 0.8500 0.8718 0.9091 0.9091 0.76
SE (66) 0.9559 0.9774 0.9697 0.9701 0.9552 0.9697 0.9774 0.9851 0.91
US (67) 0.9197 0.9420 0.9412 0.9630 0.9489 0.9130 0.9630 0.9701 0.86
𝑤-𝐹 0.9263 0.9127 0.9278 0.9360 0.9083 0.9165 0.9544 0.9613 0.82
1 The experimental result is from NoRBERT [23].

sequence’s final hidden state into output (see Figure 4), including
first (ℎ𝑓 𝑖𝑟𝑠𝑡 = ℎ[CLS] = 𝐻𝐿0) and mean (ℎ𝑚𝑒𝑎𝑛 = avg(𝐻𝐿)).

For the FR classification task, the poorest performance is
RoBERTa-base with a mean pooling strategy, its F1 score still can
reach 91.9% (at this time, the highest F1 score of NoRBERT is only
90%). In the classification of NFR, BERT-base with the mean pooling
has the lowest performance, its F1 score is 93.68%. Results show that
our PRCBERTmodel can leave a performance jump than NoRBERT
which directly applies the BERT model to deal with downstream
tasks, even the PRCBERT initialized by the smaller BERT-base lan-
guage model outperforms NoRBERT-large in functional and non-
functional requirements classification tasks by 1.91% and 0.68%,
respectively.
NFR Subclasses Classification of PROMISE. Table 4 shows
the classification performance of the 10 PROMISE NFR subclasses
(because there is only one portability requirement, which cannot
be split into 10 folds, this subclass is not considered).

Results show that our PRCBERT with flexible prompt templates
can achieve the best overall classification performance on the 10
subclasses of non-functional requirements in PROMISE, where the
poorest PRCBERT initialized by RoBERTa-base model with the
mean pooling strategy can also reach 90.83% weighted F1 score
(8.83% higher than NoRBERT). As the size of the initialized language
model increases (base to large), the performance of PRCBERT on
PROMISE NFR also shows an upward trend, and the PRCBERT ini-
tialized by RoBERTa-large language model with the mean pooling
strategy reaches the highest weighted F1 score to 96.16%.

Both the experimental results in Table 3 and Table 4 all show that
the PRCBERT initialized by RoBERTa-large language model with
the mean pooling strategy can achieve the overall best performance
when performing the classification task on the PROMISE dataset.
In view of the superior performance of the PRCBERT model under
these parameters, in the subsequent experiments, our PRCBERTwill
apply these parameters (using RoBERTa-large pre-trained language
model and mean pooling strategy).

Answer to RQ1: When initialized with RoBERTa-large pre-
trained language model, and using the mean pooling strategy
to extract sequence vector representation from the final hidden
state calculated by the transformer-based model, PRCBERT
can achieve the overall best classification performance.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Set Size
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

w
-F

BERT-MLM
NoRBERT
PRCBERT
Trans_PRCBERT

(a) performance on different train set size
of NFR-Review (0-100%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Set Size

0.750

0.775

0.800

0.825

0.850

0.875

0.900

w
-F

BERT-MLM
NoRBERT
PRCBERT
Trans_PRCBERT

(b) performance on different train set size
of NFR-Review (10%-100%)

Figure 7: The classification performance (mean of 3 repeated

experiments) of the four comparedmodels on different train-

set sizes of NFR-Review

Table 5: The classification performance (𝑤-𝐹) of the four

models on different train-set sizes of NFR-Review (𝐾=5)∗

Train Set Size NoRBERT BERT-MLM PRCBERT Trans_PRCBERT

0.0 0.2248 0.2257 0.2915 0.3779
0.1 0.7358 0.7491 0.7915 0.8124
0.2 0.8134 0.8207 0.8413 0.8550
0.3 0.8428 0.8463 0.8638 0.8719
0.4 0.8562 0.8610 0.8802 0.8822
0.5 0.8700 0.8651 0.8837 0.8857
0.6 0.8755 0.8725 0.8885 0.8889
0.7 0.8836 0.8811 0.8906 0.8967
0.8 0.8876 0.8828 0.8999 0.8991
0.9 0.8874 0.8875 0.8891 0.9000
1.0 0.8937 0.8873 0.8967 0.9014

∗ Each value is the mean 𝑤-𝐹 of 3 repeated experiments (random seeds are 42, 930728, and
904727489 respectively).

Classification on NFR-Review. In order to explore the transfer-
ability and generality of our PRCBERT, we further compare the
classification performance of NoRBERT, BERT-MLM, PRCBERT,
and Trans_PRCBERT (PRCBERT is firstly fine-tuned on PROMISE,
then trained on NFR-Review) on NFR-Review requirement dataset.

Figure 7 shows the performance curves of the four models on
different train-set sizes of NFR-Review, besides, Table 5 lists the
corresponding detailed statistic information of Figure 7(a), where
the underline mark means the best performing model in a specified
train set size, and the bold font is to highlight the highest 𝑤-𝐹
of a model among all train set sizes. Table 6 is the paired T-test
result between the classification performance of the four models
on different train-set sizes of NFR-Review, where the hypothesis
• H0: data sequence A has no significant improvement than data
sequence B;
• H1: data sequence A indeed has significant improvement than
data sequence B.

Based on hypothesis H0, we set the hypothesized mean difference
as 0, 𝛼 = 0.05. From Figure 7, Table 5, and Table 6, we can draw
some conclusions:
• The classification performance of BERT-MLM has no significant
improvement than that of NoRBERT;
• PRCBERT outperforms NoRBERT and BERT-MLM among all
train-set sizes (PRCBERT’s weighted F1 score is 2.26% higher
than NoRBERT on average overall train-set sizes). In addition,
PRCBERT can achieve a maximum weighted F1 score of 89.99%.
• Due to Trans_PRCBERT being previously fine-tuned on
PROMISE and being able to directly be applied for classifica-
tion of NFR-Review, the semantic understanding learned from

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

Table 6: The paired T-test between classification performance

of 4 models on different train set size of NFR-Review. If the

value of t Stat is larger than t Critical One-tail, the corre-

sponding data pair will violate the H0

Data Pair
1

t Stat t Critical One-tail Obey H0
(BERT-MLM, NoRBERT) 0.4152 1.8125 Yes
(PRCBERT, NoRBERT) 3.6506 1.8125 No
(Trans_PRCBERT, NoRBERT) 2.7740 1.8125 No
(PRCBERT, BERT-MLM) 4.1934 1.8125 No
(Trans_PRCBERT, BERT-MLM) 2.8634 1.8125 No
(Trans_PRCBERT, PRCBERT) 1.8151 1.8125 No

1 Each object in a data pair is the weighted 𝐹1 score sequence corresponding to a column in the
Table. 5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Set Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

w
-F

BERT-MLM
NoRBERT
PRCBERT
Trans_PRCBERT

(a) performance on different train set size
of NFR-SO (0-100%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Train Set Size

0.820

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

w
-F

BERT-MLM
NoRBERT
PRCBERT
Trans_PRCBERT

(b) performance on different train set size
of NFR-SO (10%-100%)

Figure 8: Classification performance (mean of 3 repeated

experiments) of 4models (NoRBERT, BERT-MLM, PRCBERT,

Trans_PRCBERT) on different train set size of NFR-SO

PROMISE is preserved to a certain extent, finally manifesting
as the weighted F1 score of zero-shot on NFR-Review is 37.79%.
Moreover, the performance curve of Trans_PRCBERT is overall
the best among all 4 models and reaches the highest weighted F1
score of 90.14%.
• The result in Figure 7(b) shows that at 10% to 40% of the train-
set size, the weighted F1 scores of the four models have the
fastest growth rate. When only fine-tuned on the 70% train-set,
Train_PRCBERT can achieve 99.48% (0.8967/0.9014) classification
performance compared with using the whole train-set, acquiring
more rich semantic comprehension fast to some extent.

Classification on NFR-SO. In order to further explore the classifi-
cation performance of the PRCBERT on an extremely large dataset,
we continue to apply these four models (Trans_PRCBERT is now
firstly fine-tuned on PROMISE, then trained on NFR-SO) to perform
the classification task on the NFR-SO dataset with 17434 samples.

Figure 8 shows the performance curves of the four models on
different train-set sizes of NFR-SO. Table 7 shows the correspond-
ing detailed statistics of Figure 8(a). In addition, Table 8 lists the
statistics of the paired T-test results between the classification per-
formance of 4 models on different train-set sizes of NFR-SO (the
related setting is the same as that applied in paired T-test of NFR-
Review, e.g., hypothesis, hypothesized mean difference, 𝛼 , etc.).

Based on Figure 8, Table 7, and Table 8, we could conclude that:
• Our PRCBERT with flexible prompt templates is able to achieve
the maximum weighted F1 score of 86.22%, outperforming NoR-
BERT and BERT-MLM among all train-set sizes (increased by
1.08% and 1.20% on average, respectively).

Table 7: The classification performance (𝑤-𝐹) of the four

models on different train-set sizes of NFR-SO (𝐾=7)∗

Train Set Size NoRBERT BERT-MLM PRCBERT Trans_PRCBERT

0.0 0.1109 0.1225 0.1779 0.6620

0.1 0.8209 0.8186 0.8287 0.8392

0.2 0.8301 0.8303 0.8373 0.8445

0.3 0.8368 0.8374 0.8412 0.8481

0.4 0.8423 0.8408 0.8463 0.8542

0.5 0.8449 0.8460 0.8488 0.8567

0.6 0.8474 0.8468 0.8562 0.8579

0.7 0.8495 0.8514 0.8581 0.8621

0.8 0.8525 0.8525 0.8601 0.8633

0.9 0.8554 0.8554 0.8615 0.8658

1.0 0.8559 0.8571 0.8622 0.8665

∗ Each value is the mean 𝑤-𝐹 of 3 repeated experiments (random seed are 42, 930728, and
904727489 respectively).

Table 8: The paired T-test between classification performance

of the four models on different train-set sizes of NFR-SO.

Data Pair
1

t Stat t Cirtical One-tail Obey H0
(BERT-MLM, NoRBERT) 0.1086 1.8331 Yes
(PRCBERT, NoRBERT) 13.7676 1.8331 No
(Trans_PRCBERT, NoRBERT) 15.9082 1.8331 No
(PRCBERT, BERT-MLM) 10.6173 1.8331 No
(Trans_PRCBERT, BERT-MLM) 11.7404 1.8331 No
(Trans_PRCBERT, PRCBERT) 8.1068 1.8331 No

1 Each object in a data pair is the weighted F1 score sequence corresponding to a column in the
Table 7

• Train_PRCBERT which is transferred from PROMISE to NFR-
SO gains more natural language semantic understanding and
achieves the best weighted F1 score of 86.65%. There is an obvi-
ous performance boost compared with the other three models
(increased by 6.12% than NoRBERT, 6.01% than BERT-MLM, and
4.93% than PRCBERT on average, respectively).
• Trans_PRCBERT is able to auto-label a new dataset (NFR-SO)
without any adaptation of the classification neural networkwhich
is added behind a pre-trained transformer-based language model.
Results show that Trans_PRCBERT outperforms the other three
models that use a random initialization for downstream classifi-
cation at the beginning, and reaches a zero-shot performance of
66.20%, showing high generalization and transferability.

Answer to RQ2: PRCBERT with flexible prompt templates
outperformsNoRBERT and BERT-MLMon the PROMISE,NFR-
Review, and NFR-SO datasets. In PROMISE NFR classification,
PRCBERT makes a 14.13% performance boost over NoRBERT.
In the classification of NFR-Review and NFR-SO, the clas-
sification accuracy of PRCBERT is moderately better than
NoRBERT (2.26% and 1.09%) and BERT-MLM (2.19% and 1.20%)
on average among 11 different train-set sizes.

Auto-label Unseen Requirements. Given the excellent general-
ization and transfer-ability of Trans_PRCBERT as shown in classi-
fication on NFR-Review and NFR-SO, we apply Algo. 1 integrated
with self-learning strategy to further enhance zero-shot classifica-
tion performance of Trans_PRCBERT (previously pre-trained on
PROMISE). To test the capability of this model in auto-labeling the

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

0.225 0.250 0.275 0.300 0.325 0.350
Threshold

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53

w
-F

 0.5327

(a) performance on NFR-Review

0.150 0.175 0.200 0.225 0.250 0.275
Threshold

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

w
-F

0.7296

(b) performance on NFR-SO

Figure 9: The classification performance (mean of 3 repeated

experiments on NFR-Review and NFR-SO with different

thresholds of label confidence for the self-learning strategy

in Trans_PRCBERT

Table 9: Zero-shot performance onNFR-Review and NFR-SO

Zero-shot Strategy Dataset 𝑤-𝐹

Trans_PRCBERT NFR-Review 0.3779
Trans_PRCBERT with self-learning enabled NFR-Review 0.5327

Trans_PRCBERT NFR-SO 0.6620
Trans_PRCBERT with self-learning enabled NFR-SO 0.7296

unseen requirements, we de-label the NFR-Review and NFR-SO
datasets as the input 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 of Algo. 1, respectively.

As shown in Table 9, Trans_PRCBERT with a self-learning strat-
egy auto-labels the de-labeled NFR-Review and NFR-SO require-
ment dataset much more effectively and achieve a higher weighted
F1 score of 53.27% (15.48% higher) and 72.96% (6.76% higher), exist-
ing an obvious performance improvement than directly zero-shot
with PRCBERT on the de-labeled requirements). Figure 9 shows the
performance (average F1 score calculated on Equation 9) growth
curves with different thresholds on NFR-Review and NFR-SO. Ac-
cording to the Pigeonhole principle, we set the threshold starting
from 1

4 and 1
7 (we choose its approximation of 0.15) respectively

with a 0.025 (a more precise value is likely to cause overfit) step
increment. Results illustrate that selecting the sample whose confi-
dence of its predicted label is larger than 0.225 to form the initial
𝑐𝑜𝑎𝑟𝑠𝑒𝑆𝑒𝑡 (see Algo. 1) can reach a much more promising perfor-
mance gain.

Answer to RQ3: Trans_PRCBERT exhibits excellent transfer-
ability and generalization capabilities, as its zero-shot per-
formance on NFR-Review and NFR-SO is 37.79% and 66.20%,
respectively. Enabling the self-learning strategy (see Algo. 1) of
Trans_PRCBERT, it is able to boost the zero-shot performance
on NFR-Review by 15.48%, and on NFR-SO by 6.76%.

5.5 Discussion

In this section, we identify the major threats to validity and discuss
the practical applications and limitations of our proposed method.
Threats to Validity. Our experiments are based on BERT [15]
and RoBERTa [35], but not on other more extensive pre-trained
language models. However, existing experiments are available to
prove the superiority and universality of our proposed method.
Regarding the NFR-SO dataset, we collected and formed it from
StackOverflow. We determined the tags of these requirement
statements according to the tag category of the question and an

auxiliary manual check. The accuracy of labels may be affected
by the tags of StackOverflow itself. In the future work, we will
consider more rigorous manual labeling and inspection to reduce
the noise in the data as much as possible. In addition, the hyperpa-
rameter settings and data partitioning in these experiments may
also affect the experimental results. However, we set up three ran-
dom seeds for repeated experiments to minimize the contingency
of the results. We also conducted paired T-test to compare the per-
formance of various models. The experimental results prove the
relative performance advantages and stability of our method.
Applications and Limitations in Practice. NLP-supported re-
quirements engineering has been widely practiced in academia
and industry, such as classifying requirements, detecting language
issues, and generating domain specific languages [58]. Require-
ments classification is beneficial to requirements apportionment
and reuse. Our proposed method could improve the performance
of requirements classification in practical applications. Further-
more, our work contributes a new large dataset of non-functional
requirements for developing and experimenting new requirement
analysis methods. In practice, PRCBERT’s self-learning strategy
can be combined with an active-learning strategy to enhance its
transfer-ability in the zero-shot scenarios. However, there may be
a weakness (or a trade-off) in our PRCBERT, which is scarifying
the inference efficiency to get a better classification performance —
with the number of classes increasing, it will take more (lower than
linearly because GPU can accelerate parallel computing to a certain
extent) inference time to predict the class of the input sequence.

6 RELATEDWORK

Our study is mainly relevant to the following two lines of research:
requirement classification and BERT for requirement engineering.

6.1 Requirements Classification

The classification of requirements is an important research problem
in the field of software engineering. The task classifies require-
ments into different categories based on application purposes. In
recent years, a series of work [1, 4, 10, 50] based on supervised
machine learning techniques are dedicated to the classification of
non-functional requirements (NFRs). In [10, 50], Tóth, Binkhonain
et al. compare the performance of a variety of NFR classification
models based on machine learning through experiments. Their re-
sults show that themodel based on Support VectorMachines (SVMs)
achieves the best performance on a small labeled NFR dataset. In
[4], Amasaki et al. use the word vector representation of NFRs and
SVM to classify the requirement statements into 14 NFR categories.
In [1], Abad et al. improve the performance of decision tree classi-
fier through preprocessing and unifying the PROMISE NFR dataset.
Although the above machine learning-based models have achieved
good performance on small-scale labeled NFR dataset, they rely on
manually-labeled training data and feature engineering, so they are
difficult to be applied in large-scale requirement engineering.

Due to the limitations of machine learning methods, some work
based on deep learning methods [6, 12, 23] extracts semantic in-
formation of requirement statements through a deep model to
automate the classification of NFRs. In [6], CNN and word em-
bedding are used to divide NFRs into five categories, with the F1
score ranging from 82% to 92%. In [23], Hey et al. propose NoBERT,

ASE ’22, October 10–14, 2022, Rochester, MI, USA Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun

which is an NFR classification model based on BERT, a pre-trained
language model (PLM). Good results are achieved on the PROMISE
NFR dataset by fine-tuning BERT on downstream requirements
classification tasks. In [12], Chatterjee et al. use the Snorkel tool
[44] to automatically label the unlabeled NFRs extracted from a
large number of documents and then apply these data to train PLMs,
such as BERT, for domain adjustment.

6.2 BERT for Requirements Engineering

In recent years, in addition to BERT-based NFR classification, BERT
and other PLMs have also surpassed traditional deep learning mod-
els in many other tasks of requirements engineering, showing the
best effectiveness. In [38], Mekala et al. classify the user feedback
requirements collected based on BERT and word vector, so as to
identify the useful requirements and useless requirements. In [19],
Fischbach et al. utilize BERT and other models to detect whether
causality exists in requirement statements. In [31], Lin et al. propose
a novel framework called Trace BERT based on BERT to generate
trace links between source code and natural language artifacts.
The author compares the accuracy and efficiency of three different
BERT architectures. Through transfer learning and PLMs, these
three models overcome the problem of insufficient data and achieve
better results than classical models such as RNN.

However, these works simply use PLMs through fine-tuning. In
contrast, we apply prompt learning to reconstruct the input texts
and customize flexible prompt templates to better use PLMs.

7 CONCLUSION AND FUTUREWORK

In this paper, wemake the first attempt on applying prompt learning
with a BERT-based pretrained language model for software require-
ment classification and propose flexible prompting templates by
converting one multi-class classification problem into𝐾 binary clas-
sification problems. The evaluation shows the proposed PRCBERT
performs significantly better than NoRBERT (BERT followed by
a softmax layer for fitting 𝐾-class classification) and BERT-MLM
(BERT with standard prompt templates) on the three used datasets
of requirements. In addition, we collect and provide a large-scale la-
beled dataset, namely NFR-SO, on which Trans_PRCBERT exhibits
excellent transfer- ability and generalization capabilities with good
zero-shot performance (𝑤-𝐹 score of 53.27% and 72.96% on NFR-
Review and NFR-SO with self-learning strategy enabled). In future,
we will apply and improve our approach to other classification
problems in requirement engineering and software engineering.

ACKNOWLEDGMENTS

This work is supported by the Basic Research Program of Jiangsu
Province (Grant No. BK20201192). Dr. Xue’s research is also sup-
ported by CAS Pioneer Hundred Talents Program.

REFERENCES

[1] Zahra Shakeri Hossein Abad, Oliver Karras, Parisa Ghazi, Martin Glinz, Guenther
Ruhe, and Kurt Schneider. 2017. What works better? a study of classifying
requirements. In 2017 IEEE 25th International Requirements Engineering Conference

(RE). IEEE, 496–501.
[2] Zahra Shakeri Hossein Abad, Oliver Karras, Parisa Ghazi, Martin Glinz, Guenther

Ruhe, and Kurt Schneider. 2017. What works better? a study of classifying
requirements. In 2017 IEEE 25th International Requirements Engineering Conference

(RE). IEEE, 496–501.

[3] Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual String Em-
beddings for Sequence Labeling. In COLING 2018, 27th International Conference

on Computational Linguistics. 1638–1649.
[4] Sousuke Amasaki and Pattara Leelaprute. 2018. The effects of vectorization

methods on non-functional requirements classification. In 2018 44th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA). IEEE,
175–182.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1409.0473

[6] Cody Baker, Lin Deng, Suranjan Chakraborty, and Josh Dehlinger. 2019. Au-
tomatic multi-class non-functional software requirements classification using
neural networks. In 2019 IEEE 43rd annual computer software and applications

conference (COMPSAC), Vol. 2. IEEE, 610–615.
[7] David Soares Batista. 2016. Large-scale semantic relationship extraction for infor-

mation discovery. Ph. D. Dissertation. INSTITUTO SUPERIOR TÉCNICO.
[8] David S Batista, Bruno Martins, and Mário J Silva. 2015. Semi-supervised boot-

strapping of relationship extractors with distributional semantics. In Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing.
499–504.

[9] Stefanie Beyer, ChristianMacho, Massimiliano Di Penta, andMartin Pinzger. 2021.
What Kind of Questions Do Developers Ask on Stack Overflow? A Comparison
of Automated Approaches to Classify Posts Into Question Categories. In Software

Engineering 2021, Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26. Februar

2021, Braunschweig/Virtuell (LNI, Vol. P-310), Anne Koziolek, Ina Schaefer, and
Christoph Seidl (Eds.). Gesellschaft für Informatik e.V., 27–28. https://doi.org/10.
18420/SE2021_03

[10] Manal Binkhonain and Liping Zhao. 2019. A review of machine learning algo-
rithms for identification and classification of non-functional requirements. Expert
Systems with Applications: X 1 (2019), 100001.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[12] Ranit Chatterjee, Abdul Ahmed, Preethu Rose Anish, Brijendra Suman, Prashant
Lawhatre, and Smita Ghaisas. 2021. A Pipeline for Automating Labeling to
Prediction in Classification of NFRs. In 2021 IEEE 29th International Requirements

Engineering Conference (RE). IEEE, 323–323.
[13] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In 8th International Conference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/
forum?id=r1xMH1BtvB

[14] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and
Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive LanguageModels beyond
a Fixed-Length Context. In Proceedings of the 57th Conference of the Association

for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019,

Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez
(Eds.). Association for Computational Linguistics, 2978–2988. https://doi.org/10.
18653/v1/p19-1285

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies, NAACL-HLT

2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[16] Edna Dias Canedo and Bruno Cordeiro Mendes. 2020. Software requirements
classification using machine learning algorithms. Entropy 22, 9 (2020), 1057.

[17] Edna Dias Canedo and Bruno Cordeiro Mendes. 2020. Software requirements
classification using machine learning algorithms. Entropy 22, 9 (2020), 1057.

[18] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in Neural

Information Processing Systems 32 (2019).
[19] Jannik Fischbach, Julian Frattini, Arjen Spaans, Maximilian Kummeth, Andreas

Vogelsang, Daniel Mendez, and Michael Unterkalmsteiner. 2021. Automatic
detection of causality in requirement artifacts: the cira approach. In International

http://arxiv.org/abs/1409.0473
https://doi.org/10.18420/SE2021_03
https://doi.org/10.18420/SE2021_03
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/n19-1423

PRCBERT: Prompt Learning for Requirement Classification using BERT-based Pretrained Language Models ASE ’22, October 10–14, 2022, Rochester, MI, USA

Working Conference on Requirements Engineering: Foundation for Software Quality.
Springer, 19–36.

[20] Atsushi Fujii, Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka. 1998.
Selective Sampling for Example-based Word Sense Disambiguation. Comput.

Linguistics 24, 4 (1998), 573–597.
[21] Xi Gong, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Zhuobing Han. 2019.

Joint Prediction of Multiple Vulnerability Characteristics Through Multi-Task
Learning. In 24th International Conference on Engineering of Complex Computer

Systems, ICECCS 2019, Guangzhou, China, November 10-13, 2019, Jun Pang and
Jing Sun (Eds.). IEEE, 31–40. https://doi.org/10.1109/ICECCS.2019.00011

[22] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004. Design
science in information systems research. MIS quarterly (2004), 75–105.

[23] Tobias Hey, Jan Keim, Anne Koziolek, and Walter F Tichy. 2020. NoRBERT:
Transfer learning for requirements classification. In 2020 IEEE 28th International

Requirements Engineering Conference (RE). IEEE, 169–179.
[24] ISO/IEC. 2011. Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software quality models.
(2011).

[25] Rie Johnson and Tong Zhang. 2017. Deep pyramid convolutional neural networks
for text categorization. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). 562–570.
[26] Hong Jin Kang and David Lo. 2022. Active Learning of Discriminative Subgraph

Patterns for API Misuse Detection. CoRR abs/2204.09945 (2022). https://doi.org/
10.48550/arXiv.2204.09945 arXiv:2204.09945

[27] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. 2018. Sharp Nearby,
Fuzzy Far Away: How Neural Language Models Use Context. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,

Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, Iryna Gurevych
and Yusuke Miyao (Eds.). Association for Computational Linguistics, 284–294.
https://doi.org/10.18653/v1/P18-1027

[28] Kyoung-jae Kim. 2003. Financial time series forecasting using support vector
machines. Neurocomputing 55, 1-2 (2003), 307–319.

[29] Tae Kyun Kim. 2015. T test as a parametric statistic. Korean journal of anesthesi-

ology 68, 6 (2015), 540.
[30] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neu-

ral networks for text classification. In Twenty-ninth AAAI conference on artificial

intelligence.
[31] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang. 2021.

Traceability transformed: Generating more accurate links with pre-trained bert
models. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE). IEEE, 324–335.
[32] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent Neural Network

for Text Classification with Multi-Task Learning. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New

York, NY, USA, 9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press,
2873–2879. http://www.ijcai.org/Abstract/16/408

[33] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-Task
Deep Neural Networks for Natural Language Understanding. In Proceedings of

the 57th Conference of the Association for Computational Linguistics, ACL 2019,

Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen,
David R. Traum, and Llu´
is Màrquez (Eds.). Association for Computational Linguistics, 4487–4496. https:
//doi.org/10.18653/v1/p19-1441

[34] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and
Jie Tang. 2021. Self-supervised Learning: Generative or Contrastive. IEEE Trans-

actions on Knowledge and Data Engineering (2021), 1–1. https://doi.org/10.1109/
TKDE.2021.3090866

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[36] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations, ICLR 2019, New Or-

leans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?
id=Bkg6RiCqY7

[37] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, DanHuang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-

ceedings of the 49th Annual Meeting of the Association for Computational Linguis-

tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-1015

[38] Rohan Reddy Mekala, Asif Irfan, Eduard C Groen, Adam Porter, and Mikael Lind-
vall. 2021. Classifying user requirements from online feedback in small dataset
environments using deep learning. In 2021 IEEE 29th International Requirements

Engineering Conference (RE). IEEE, 139–149.
[39] Ana Moreira, João Araújo, Jane Hayes, and Barbara Paech (Eds.). 2017. 25th

IEEE International Requirements Engineering Conference, RE 2017, Lisbon, Portugal,

September 4-8, 2017. IEEE Computer Society. https://ieeexplore.ieee.org/xpl/
conhome/8048783/proceeding

[40] Aaditya Prakash, James Storer, Dinei Florencio, and Cha Zhang. 2019. Repr: Im-
proved training of convolutional filters. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 10666–10675.
[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.

Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html
[43] A Rakhlin. 2016. Convolutional neural networks for sentence classification.

GitHub (2016).
[44] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and

Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large

Data Bases, Vol. 11. NIH Public Access, 269.
[45] Siva Reddy, Danqi Chen, and Christopher D Manning. 2019. Coqa: A conversa-

tional question answering challenge. Transactions of the Association for Compu-

tational Linguistics 7 (2019), 249–266.
[46] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distil-

BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. In NeurIPS

EMC2̂ Workshop.
[47] S. J. Sayyad. 2005. PROMISE Software Engineering Repository. (2005).
[48] Timo Schick and Hinrich Schütze. 2021. Exploiting Cloze-Questions for Few-

Shot Text Classification and Natural Language Inference. In Proceedings of the

16th Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty (Eds.). Association for Computational Linguistics,
255–269. https://doi.org/10.18653/v1/2021.eacl-main.20

[49] Timo Schick and Hinrich Schütze. 2021. It’s Not Just Size That Matters:
Small Language Models Are Also Few-Shot Learners. In Proceedings of the

2021 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,

June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, 2339–2352.
https://doi.org/10.18653/v1/2021.naacl-main.185

[50] László Tóth and László Vidács. 2018. Study of various classifiers for identification
and classification of non-functional requirements. In International Conference on

Computational Science and Its Applications. Springer, 492–503.
[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[52] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R.
Bowman. 2019. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=rJ4km2R5t7

[53] Tianlu Wang, Peng Liang, and Mengmeng Lu. 2018. What aspects do non-
functional requirements in app user reviews describe? an exploratory and com-
parative study. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 494–503.

[54] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[55] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[56] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the association

for computational linguistics: human language technologies. 1480–1489.
[57] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris

Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer sequences. Advances in Neural

Information Processing Systems 33 (2020), 17283–17297.
[58] Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J Letsholo, Muideen A

Ajagbe, Erol-Valeriu Chioasca, and Riza T Batista-Navarro. 2021. Natural language
processing for requirements engineering: a systematic mapping study. ACM

Computing Surveys (CSUR) 54, 3 (2021), 1–41.
[59] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo

Xu. 2016. Attention-based bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th annual meeting of the association

for computational linguistics (volume 2: Short papers). 207–212.

https://doi.org/10.1109/ICECCS.2019.00011
https://doi.org/10.48550/arXiv.2204.09945
https://doi.org/10.48550/arXiv.2204.09945
https://arxiv.org/abs/2204.09945
https://doi.org/10.18653/v1/P18-1027
http://www.ijcai.org/Abstract/16/408
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.18653/v1/p19-1441
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1109/TKDE.2021.3090866
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://www.aclweb.org/anthology/P11-1015
https://ieeexplore.ieee.org/xpl/conhome/8048783/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8048783/proceeding
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://openreview.net/forum?id=rJ4km2R5t7

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 A Motivating Example
	2.2 Existing Text Classification Techniques
	2.3 Research Challenges

	3 Approach Overview and Key Solutions
	3.1 Overview
	3.2 Key Solutions to Challenges

	4 TECHNICAL DETAILS OF PRCBERT
	4.1 Transformer Encoder
	4.2 Sigmoid Classifier.
	4.3 Input Representation
	4.4 Training Objective
	4.5 Auto-label Algorithm

	5 evaluation
	5.1 Research Questions
	5.2 Datasets
	5.3 Experimental Setup
	5.4 Experimental Results
	5.5 Discussion

	6 related work
	6.1 Requirements Classification
	6.2 BERT for Requirements Engineering

	7 Conclusion and Future work
	Acknowledgments
	References

